Methods All results are corrected to a 13.5% moisture basis (mb) for wheat and a 14.0% mb for flour or semolina unless otherwise specified. AACC Methods are from the Cereals and Grains Association: Approved Methods of Analysis, 11th Edition. ALVEOGRAPH AACC METHOD 54-30.02 Alveograph values (corrected to 15.0% mb) are determined using the AlveoLab according to AACC Method 54-30.02 using light mineral oil. Samples are evaluated one week after milling. The following curve parameters are measured: P (height x 1.1) is the resistance of the dough to deformation; L (length) is a measure of dough extensibility; P/L is the curve configuration ratio; W is the amount of work required to inflate the dough into a bubble; le (elasticity) measures the ability of the dough to return to its original shape; G (swelling) relates to the volume of air necessary to inflate the bubble until rupture. AMYLOGRAPH AACC METHOD 22-10.01 Amylograph peak viscosity is determined using a Viscograph-E according to AACC Method 22-10.01 with modifications. Flour (65 g, 14% mb) and distilled water (450 mL) are placed in a bowl, mixed with a whisk and then added to the Viscograph-E. ASH AACC METHOD 08-01.01 Ash content is determined using AACC Method 08-01.01. Samples are weighed into previously dried dishes (600°C, minimum of 1 h). The samples are then incinerated overnight in a muffle furnace (600°C). ### BAKING, PILOT - NO TIME DOUGH (NTD) INTERNAL METHOD White pan bread is processed in a pilot scale bakery using a NTD baking procedure. Formulation, processing conditions, and equipment used are typical for commercial production of bread. All ingredients are mixed using a spiral mixer (2 min on slow speed and then on second speed until the dough is fully developed). The dough is then rested (10 min, ambient conditions), scaled into pieces (640 g) and rounded. The dough balls are rested (10 min), shaped using a commercial B&B molder, panned and fully proofed (37°C, 85% RH). The samples are baked in a Picard reel oven (200°C, 25 min). cerealscanada.ca T: (204) 942-2166 F: (204) 983-2642 1000-303 Main St. Winnipeg, Manitoba Canada R3C3G7 ### BAKING, PILOT – SPONGE & DOUGH **INTERNAL METHOD** White pan bread is processed in a pilot scale bakery using a sponge & dough baking procedure. Formulation, processing conditions, and equipment used are typical for commercial production of bread. The sponge ingredients (a portion of flour, water, yeast, and yeast food) are mixed in a spiral mixer. The sponge is then fermented (4 h) in a proofing cabinet (27°C, 75% relative humidity). To prepare the dough, the fermented sponge and the remaining ingredients are placed in a spiral mixer and mixed on slow speed (2 min) and then on second speed until the dough is fully developed. The dough is then rested (10 min, ambient conditions), scaled into pieces (640 g) and rounded. The dough balls are rested (10 min), shaped using a commercial B&B molder, panned and fully proofed (37°C, 85% RH). The samples are baked in a Picard reel oven (200°C, 25 min). #### **BAKING - TOTAL BREAD SCORE** INTERNAL METHOD Pan bread, baked in a pilot scale bakery is subjectively scored using an internal method to obtain the total bread score. Total bread score is the sum of the score for external loaf characteristics (symmetry, crust character, crust colour, and break and shred) and the score for internal crumb characteristics (crumb colour and crumb structure). #### **COLOUR – BREAD CRUMB** INTERNAL METHOD Assessment of the crumb colour of a bread slice is performed using the Minolta CR-400/410 colorimeter (D65 illuminant, 2° standard observer angle) according to manufacturer's instructions. Two slices of bread are placed on the light projection tube and the measurement is taken. L* values (0 = black to 100 = white), which indicate the brightness of the crumb, are recorded. # COLOUR - FLOUR/SEMOLINA (WET) INTERNAL METHOD Assessment of flour/semolina colour is performed on a slurry of flour using the glass ended attachment and water made according to AACC Method 14-30.01 with respect to flour weight, volume of water, mixing time and waiting time. Samples are evaluated one week after milling. The Minolta CR-410 colorimeter (D65 illuminant, 2° standard observer angle) is used according to manufacturer's instructions and the following parameters are measured: L* (0 = black to 100 = white); a* (-a* = green to +a* = redness); b* (-b* = blue to +b* = yellow). Colour – Noodle Internal Method A Minolta CR-410 colorimeter (D65 illuminant, 2° standard observer angle) is used to measure the colour of a noodle dough sheet (see Noodle Processing for details). The dough sheet is folded into six layers and stored in a covered container at ambient conditions. The following parameters are measured: L* (0 = black to 100 = white); a* (-a* = green to +a* = red); b* (-b* = blue to +b* = yellow). The average of five colour measurements, taken at five spots on the dough sheet surface at 3 h and 24 h from mixing time, are reported. ### COLOUR - SEMOLINA (DRY) INTERNAL METHOD Assessment of semolina colour is performed using a granular material attachment and the Minolta CR-410 colorimeter (D65 illuminant, 2° standard observer angle) according to manufacturer's instructions. Samples are evaluated one week after milling. The following parameters are measured: L* (0 = black to 100 = white); a* (-a* = green to +a* = red); b* (-b* = blue to +b* = yellow). COLOUR – SPAGHETTI INTERNAL METHOD A Minolta CR-410 colorimeter (D65 illuminant, 2° standard observer angle) is used to measure the colour of dried spaghetti strands (see Spaghetti Processing for details). Strands are mounted on standard white cardboard (7.5 cm x 7.5 cm) using double sided tape. The following parameters are measured: L* (0 = black to 100 = white); a* (-a* = green to +a* = red); b* (-b* = blue to +b* = yellow). EXTENSOGRAPH AACC METHOD 54-10.01 Extensographs are performed using the Extensograph-E according to AACC Method 54-10.01 with the modification that the dough test pieces are not stretched at 90 min, only re-formed. Results are reported for the stretches completed at 45 and 135 min. The Extensograph-E is calibrated so that a 100 g load is equivalent to 80 BU. Samples are tested one week after milling. The following parameters are measured: R_{max} is the maximum height (maximum resistance) of the curve; E is a measure of the extensibility in cm; A is the area under the curve in cm² (energy). ## FALLING NUMBER (FN) **AACC METHOD 56-81.03** Falling number is determined using the FN1000 with the Shakematic 1095 according to AACC Method 56-81.03. For evaluation of wheat FN, a sample of wheat (minimum of 250 g) is ground using the FN3100 laboratory mill with 0.8 mm screen. FARINOGRAPH AACC Method 54-21.02 Farinographs are performed using the Farinograph-E or Farinograph-AT with either the large bowl (300 g) or small bowl (50 g) according to AACC Method 54-21.02. Flour is tested one week after milling. The following parameters are measured: water absorption (FAB) is the amount of water needed to center the curve on the 500 BU line at maximum consistency (peak); dough development time (DDT) is the time for the dough to reach maximum consistency (peak); stability is the amount of time that the top portion of the curve is above the 500 BU line; mixing tolerance index (MTI) is the drop in BU of the top of the curve at DDT to the top of the curve 5 min after DDT. ### FLOUR YIELD, AS IS – LAB MILLING **INTERNAL METHOD** Wheat for milling is cleaned using a dockage tester with standard screens and then conditioned for 20 to 24 hours, based on wheat class: hard wheats (i.e. CWRS; 16.5% moisture); medium hard wheats (i.e. CPSR, CWRW; 16.0% moisture). Milling is done using a Bühler laboratory flour mill (MLU-202) using preset feed rates and roll gap settings for all common wheat classes. After milling, the bran and shorts fractions are put through a Bühler bran finisher (MLU-302) and any additional flour released is added to the original flour and used for calculation of the final flour yield based on total products. #### FLOUR YIELD — CORRECTED TO 0.50% ASH BASIS INTERNAL METHOD Correction of flour milling yield to a 0.50% ash basis is calculated to show milling yields on a constant ash basis and allows for a better comparison among wheat samples with different extraction rates and flour ash contents. The correction is based on an estimate derived from a laboratory mill ash curve where each 0.01% difference in flour ash content (based on a 0.50% ash content) is equal to a 0.50% extraction adjustment. It is calculated as follows: Milling yield, 0.50% ash basis = % milling yield (as is) + $0.50 \times (0.50 - ash content, as is)$ 0.01 #### SEMOLINA YIELD - LAB MILLING INTERNAL METHOD Wheat for milling is cleaned using a dockage tester with standard screens and then conditioned for 16 to 20 hours. Milling is done using a Bühler laboratory semolina mill (MLU-202) using preset feed rates and roll gap settings. After milling, the semolina is purified using Namad laboratory purifier. Break flour is added to purified semolina and the total amount is reported as semolina yield. To calculate total yield, sizing flour is added to purified semolina and break flour blend. Yields are calculated based on total products. ### GLUTEN CONTENT & GLUTEN INDEX (GI) **AACC METHOD 38-12.02** Wet gluten content and gluten index values are determined using the Glutomatic 2200 with the Gluten Index Centrifuge 2015 according to AACC Method 38-12.02. The single-stage washing procedure is used for flour while the two-stage washing procedure is used for semolina/ground wheat. Flour/semolina samples are tested one week after milling. GRANULATION AACC Method 66-20.01 Semolina granulation is determined using a Ro-tap sieve shaker according to AACC Method 66-20.01. ## MOISTURE CONTENT - GROUND WHEAT/FLOUR/SEMOLINA **AACC METHOD 44-15.02** The moisture content of ground wheat/semolina/flour is determined according to AACC Method 44-15.02 using the single stage procedure (130°C, 1 h). #### **MOISTURE CONTENT – WHEAT** **AACC METHOD 44-11.01** The moisture content of whole kernel wheat is determined using the Perten AM5200-A according to AACC Method 44-11.01. ### Noodle Processing – Yellow Alkaline Noodles (YAN) **INTERNAL METHOD** Yellow alkaline noodles are processed using an Ohtake vertical mixer and lab scale Ohtake sheeter. Salt (NaCl; 1% based on flour weight) and alkaline salts ($K_2CO_3:Na_2CO_3=6:4$ w/w: 1.3% based on flour weight) are dissolved in water and added to flour at a constant water absorption (34%, 14% mb, mass balanced). The flour and salt solution are mixed (100 rpm, 10 min) and rested (15 min). Sheeting begins with an initial gap setting of 3.5 mm and then the dough sheet is folded, sheeted again at the same gap setting and rested (30 min) on the noodle roller in a plastic bag. The dough sheet is subjected to four reduction passes (2.0, 1.4, 1.1, 0.9 mm). A section (180 cm) is cut from the noodle sheet for colour (see Colour – Noodle for details). The remaining dough is sheeted a final time before cutting. The final gap setting is adjusted for each sample to ensure the resulting noodle strands have a thickness of 1.4 mm. Noodle strands are cut using a No. 10 cutter to produce noodles with a width of 3.0 mm for texture analysis. ### Noodle Processing – White Salted Noodles (WSN) **INTERNAL METHOD** White salted noodles are processed using an Ohtake vertical mixer and lab scale Ohtake sheeter. Salt (NaCl; 2% based on flour weight) is dissolved in water and added to the flour at a constant water absorption (32%, 14% mb, mass balanced). The flour and salt solution are mixed (100 rpm, 10 min) and rested (15 min). Sheeting begins with an initial gap setting of 3.5 mm and then the dough sheet is folded, sheeted again at the same gap setting and rested (30 min) on the noodle roller in a plastic bag. The dough sheet is subjected to four reduction passes (2.0, 1.5, 1.2, 1.0 mm). A section (180 cm) is cut from the noodle sheet for colour (see *Colour – Noodle* for details). The remaining dough is sheeted a final time before cutting. The final gap setting is adjusted for each sample to ensure the resulting noodle strands have a thickness of 1.4 mm. Noodle strands are cut using a No. 10 cutter to produce noodles with a width of 3.0 mm for texture analysis (after cooking, see *Noodle – Texture* for details). Noodle – Texture Internal Method Noodles (16 strands, 10 cm length) are assessed for texture by cooking in boiling water (500 mL) for three different cooking times (2.5, 3.5 and 5.0 min). After each cooking time, the noodles are drained, cooled in water (22°C, 1.5 min) and placed in a sieve. The cooked noodles are lined up on the TA.XT measuring plate and rested (3.75 min) prior to taking a measurements. A TA.XTplus Texture Analyzer with a firmness blade (TA-47) is used to measure maximum cutting stress (g/mm²). The average of two measurements taken on 16 strands is reported for each sample at each cooking time. # PARTICLE SIZE INDEX (PSI) **AACC METHOD 55-30.01** Wheat kernel hardness is assessed by determining the particle size index using AACC Method 55-30.01 with modifications. Wheat, with moisture content between 11.0-13.0%, is ground using an UDY Cyclone grinder (1.0 mm screen) and a feed rate regulator (52 rpm). Ground wheat is sieved using a Ro-tap sieve shaker. PROTEIN CONTENT WILLIAMS ET AL. 1998 Protein content (N x 5.7) is measured by a combustion nitrogen analysis (CNA) method using the LECO FP-828 according to Williams *et al.* (Protein testing methods. In, Wheat Protein, Production and Marketing. Proceedings of the Wheat Protein Symposium. Saskatoon, SK. University of Saskatchewan Press. March 9-10, 1998. pp. 37-47). Drift corrections are done using EDTA. #### Spaghetti – Cooking Loss INTERNAL METHOD Dried spaghetti (30 g, 1 cm length) is cooked in boiling water (300 mL) to its cooking time (CT) which is defined as the time when the centre core of the spaghetti just disappears when pressed between two Plexiglas plates. After the CT is reached, the spaghetti is drained and the cooking water is retained. The cooking water is evaporated (130°C, 24 h) and the remaining residue is weighed and expressed as a percentage of the initial spaghetti weight. Spaghetti – Firmness Internal Method Dried spaghetti (12 strands, 5 cm length) is cooked in boiling water (250 mL, 9 min). After cooking, the spaghetti is drained and placed on a fine sieve. A TA.HD Texture Analyzer with a firmness blade (TA-47) is used to measure firmness. The average of four measurements is reported for each sample (two measurements per set of five strands). #### Spaghetti – Processing: Lab Scale INTERNAL METHOD A Namad laboratory pasta extruder with a Teflon die (1.80 mm diameter) is used to process spaghetti. Semolina and water (27% absorption based on semolina weight) are mixed with a paddle mixer for 12 min, then the dough is extruded under vacuum. Spaghetti is dried using a Bühler batch dryer using a high temperature drying cycle (85°C, 5.75 h). #### **SPECIFIC VOLUME - BREAD** **AACC METHOD 10-14.01** The BVM-L370 (TexVol) is used to measure loaf volume (cm³) according to AACC Method 10-14.01. The loaf weight is also determined. Specific volume (cm³/g) is calculated as the ratio of loaf volume to loaf weight. #### **STARCH DAMAGE** **AACC METHOD 76-33.01** Starch damage is measured using the SDmatic according to AACC Method 76-33.01 and is reported in UCD. ### **YELLOW PIGMENT CONTENT** **F**U **ET AL. 2013** Semolina yellow pigment content is determined according to Fu et al. (2013. J. Cereal Sci. 57: 260-566). ### FOR MORE INFORMATION CONTACT: NORBERT CABRAL KRISTINA PIZZI Manager, Milling 204-983-2171 / ncabral@cerealscanada.ca *Manager, Analytical Services* 204-984-6076 / kpizzi@cerealscanada.ca ### YULIA BORSUK Manager, End-products 204-983-1055 / yborsuk@cerealscanada.ca